Обязательные параметры
Лекция 4. Параметры бурового раствора и методы их контроля.
Параметры (показатели) бурового раствора, подлежащие контролю, можно разделить на 3 группы:
1. Параметры, контроль которых обязателен для всех скважин:
• Условная вязкость (УВ);
• Статическое напряжение сдвига (СНС);
• Показатель фильтрации (Ф);
• Толщина фильтрационной корки;
• Концентрация водородных ионов (рН);
• Концентрация твердых примесей (песка).
В случае использования специальных буровых растворов (ингибирующих, эмульсионных) необходимо контролировать:
• Состав фильтрата бурового раствора;
• Напряжение электропробоя (для эмульсионных растворов);
• Концентрацию твердой фазы (общую и глинистую).
2. Специальные параметры, контроль которых обязателен для скважин с осложненными геологическими условиями (поглощения, нефте- газопроявления, высокая минерализация пластовых вод и др.). Эта группа включает:
• Фильтрацию при повышенных температурах (Ф);
• Динамическое напряжение сдвига (ДНС);
• Пластическую вязкость (ηпл.);
• Содержание и состав твердой фазы;
• Напряжение электропробоя (для эмульсионных растворов).
3. Факультативные параметры, дающие дополнительную информацию о свойствах бурового раствора. Это:
• Динамическое напряжение сдвига (ДНС) и пластическая вязкость (ηпл.) при повышенной температуре;
• Коэффициент трения корки (КТК).
По технологическому принципу свойства буровых растворов можно разделить на 5 групп:
• Условная вязкость (УВ);
• Статическое напряжение сдвига (СНС);
• Динамическое напряжение сдвига (ДНС);
• Пластическая вязкость (ηпл.).
2. Показатели фильтрации и стабильности:
• Толщина фильтрационной корки;
• Напряжение электропробоя (для эмульсионных растворов).
• Смазочная способность (коэффициент трения пары сталь-сталь);
• Коэффициент трения корки (КТК);
4. Показатели загрязнения:
5. Компонентный и химический состав:
• Содержание компонентов (глины, воды, утяжелителя, смазочных веществ и др.), а также различных ионов солей, общая минерализация и т. д.
Для измерения плотности могут быть использованы:
• Плотномер электронный ПЭ-1(принцип работы основан на измерении выталкивающей силы, действующей на погруженный в жидкость поплавок)
• Постоянная вискозиметра (время истечения 500 см 3 воды при температуре (20±5) °С,) с 15;
• Погрешность постоянной вискозиметра, с ±0,5;
• Объем воронки вискозиметра, см 3 700;
• Объем мерной кружки, см 3 500;
В воронку заливают 700 см 3 бурового раствора, измеряют время истечения 500 см 3 в секундах.
помощью ротационных вискозиметров ВСН-3; ВСН-2М, ф. FANN. Она не имеет определенного физического смысла, ее нельзя непосредственно измерить с помощью приборов, определяют расчетным путем. Пластическая вязкость зависит от вязкости дисперсионной среды и суммарного объема твёрдой фазы.
Для измерения используется резистивиметр РВ-1.
Содержание песка характеризует степень загрязнения бурового раствора грубодисперсными фракциями различного минералогического состава.
Песком (П,%) считают все грубодисперсные частицы независимо от их происхождения (в том числе комочки нераспустившейся глины).
Отмытым песком (ОП,%) являются собственно песчаные частицы, неспособные размокать (распускаться) в воде.
Для определения содержания песка используется металлический отстойник ОМ-2.
Общее содержание песка определяют по формуле: N=2V0,
Наиболее удобен для работы комплект для определения содержания песка ф. FANN.
Определение снс бурового раствора
Буровые растворы запись закреплена
Реологические свойства растворов при низких скоростях сдвига и внсс
Развитие технологий направленного бурения, бурения с большим отходом забоя от вертикали и горизонтального бурения, а также использование биополимеров в составе буровых растворов существенно изменили представление о реологических параметрах растворов, необходимых для качественной очистки искривленного ствола скважины. В ходе проведения многочисленных лабораторных исследований и промысловых опытов было обнаружено, что показания вискозиметра Фанна при 3 и 6 об/мин имеют лучшую корреляцию с оценками качества очистки ствола скважины, чем значения динамического напряжения сдвига растворов. Кроме того, по результатам этих измерений можно оценивать способность растворов удерживать барит в динамических и статических условиях. Об этом подробнее рассказывается в главах, посвященных осаждению барита и очистке скважины от шлама. В дополнение к вышесказанному было обнаружено, что ВНСС, создаваемая сетью полимеров в системах с ксантановой смолой, способствуют значительному повышению качества очистки горизонтальных и наклонных участков ствола скважин и удержанию твердой фазы во взвешенном состоянии. ВНСС измеряется с помощью вискозиметра Брукфильда при скорости сдвига 0,3 об/мин (эквивалент 0,037 об/мин на ротационном вискозиметре).
Рис. 2 демонстрирует тот факт,что растворы, имеющие практически одинаковые вязкости при 3 и 6 об/мин ротора вискозиметра Фанна, могут очень сильно различаться по значениям ВНСС. Эти реологические значения при низком сдвиге заполняют пробел между традиционными динамическими измерениями пластической вязкости и ДНС и статическими измерениями СНС.
Тиксотропия и статическое напряжение сдвига
Тиксотропия — это свойство некоторых жидкостей образовывать внутреннюю трехмерную структуру в статических условиях,которая разрушается при сдвиге. Большинство буровых растворов на водной основе проявляют тиксотропные свойства благодаря присутствию электрически заряженных твердых частиц или полимеров, способных образовывать внутреннюю структуру. Значения статического напряжения сдвига, измеренные после 10 секунд и 10 минут выдержки раствора в покое,а в критических ситуациях после 30 мин, с помощью вискозиметра Фанна отражают степень тиксотропности раствора. Величина статического напряжения сдвига зависит от содержания и типа твёрдой фазы бурового раствора, времени выдержки раствора в покое, его температуры и химической обработки. Иными словами,все, что способствует или препятствует сближению и флокуляции частиц, будет усиливать или ослаблять тенденцию к структурообразованию.Скорость образования и прочность внутренней структуры бурового раствора важны для удержания в растворе выбуренной породы и материала-утяжелителя. Требования к значениям статического напряжения сдвига исходят именно из удовлетворения данной способности бурового раствора. При этом избыточная прочность структуры раствора (т. е. выше необходимой для обеспечения удержания шлама и материала утяжелителя) недопустима. Избыточно высокое статическое напряжение сдвига бурового раствора является причиной следующих осложнений:
Удержания воздуха или пластового газа в растворе.
Избыточного давления на насосах и в скважине при восстановлении циркуляция раствора после спускоподъёмной операции.
Снижения эффективности работы оборудования системы очистки раствора.
Сильного поршневого эффекта(депрессии) в кольцевом пространстве скважины при подъеме бурильной колонны.
Высокой репрессии на стенки скважины при спуске бурильной колонны.
Невозможности спуска геофизического оборудования до забоя.
Прогрессирующее или мгновенное структурообразование может указывать на наличие проблем в системе раствора. Большая разница между начальными показаниями СНС и показаниями через 10 или 30 мин называется прогрессирующим структурообразованием и свидетельствует оскоплении твердой фазы. Если начальное значение СНС и значение через 10 мин являются высокими и разница между ними невелика, то это говорит о мгновенном структурообразовании и может указывать на то, что произошла флокуляция. В системах с ксантановой смолой в основном значения СНС высокие и плоские, но причина заключается в образовании полимерной сети. Помимо этого, структурообразование биополимерные системы на основе ксантановой смолы также является хрупким, и структура легко разрушается. Хрупкое структурообразование характерно для полимерных буровых растворов. На Рис.3 представлены различныетипыструктурообразования в буровых растворах.
Статическое и динамическое напряжение являются мерой сил притяжения в растворе. Начальное статическое напряжение сдвига характеризует статические силы притяжения, а динамическое напряжение сдвига— динамические. Следовательно,при избыточном начальном СНС применяется та же обработка, что и при избыточном ДНС. Жидкости с тиксотропной структурой обладают своеобразной «памятью», что следует учесть при исследовании реологических свойств буровых растворов. Если жидкость пробыла в состоянии покоя в течение определенного времени перед измерением напряжения сдвига при определенной скорости сдвига, потребуется определенное время при заданной скорости сдвига прежде, чем можно будет измерить уравновешенное напряжение сдвига. Все связи между частицами, которые могут быть разрушены при данной скорости сдвига, должны быть разрушены,иначе измеренное напряжение сдвига окажется выше, чем истинное уравновешенное напряжение сдвига. Необходимое время зависит от внутренней структуры образца. После измерения при 600 об/мин и снижения скорости сдвига до 300 об/мин жидкость «помнит»свое состояние при 600 об/мин.Требуется некоторое время для того, чтобы восстановились некоторые связи между частицами,которые могут существовать при пониженной скорости сдвига,прежде чем можно будет измерить истинное уравновешенное напряжение сдвига. Такое напряжение сдвига сначала будет слишком низким, но постепенно увеличится и достигнет равновесия. Первое измеренное значение напряжения сдвига при любой скорости сдвига является функцией непосредственной истории сдвига данного образца. Если начальное СНС раствора измеряется непосредственно после его сдвига при 600 об/мин, показанное значение будет ниже, чем истинное напряжение сдвига раствора. Так как образование или разрушение гелевой структуры зависит от времени, существует множество путей перехода от одной скорости сдвига к другой. Это показано на Рис.4.
Сплошная кривая соответствует равновесным условиям замеров — в каждой ее точке достигнуто устойчивое значение показаний вискозиметра. Если в точке A начать быстро снижать скорость сдвига, то реологическая кривая течения во всех точках(кроме A) окажется ниже, чем равновесная кривая.Если теперь вискозиметр остановить и подождать некоторое время, пока в растворе образуется достаточно прочная структура,то включив вискозиметр при минимальной скорости, получим точку B, лежащую выше равновесной кривой. Быстро увеличивая скорость сдвига, получим новую реологическую кривую, все точки которой находятся выше равновесных значений. Достигнув точки C можно дождаться снижения показаний до равновесного значения в точке A.Кривой ВС можно следовать,если раствор плохо обработан. Это приведет к значительному увеличению давления циркуляции. Для достижения точки равновесия А может потребоваться длительное время. Правильно обработанные растворы следуют по более короткому пути для достижения равновесия, что приводит к более низкому давлению закачки.
Влияние температуры и давления на вязкость раствора
Увеличение температуры и давления влияет на вязкость жидкой фазы буровых растворов. Этот эффект сильнее сказывается на инвертно-эмульсионных растворах, чем на растворах на водной основе. Минеральные и синтетические масла разжижаются при повышении температуры более интенсивно, но при этом различные системы растворов на углеводородной и синтетической основе поразному реагируют на изменение температуры.Растворы на водной основе являются почти идеальными с гидродинамической точки зрения жидкостями, т.к. они практически несжимаемы. Растворы на углеводородной или синтетической основе, напротив, в той или иной степени подвержены сжатию под давлением. Их способность сжиматься варьируется в зависимости от основы раствора, соотношения углеводородная основа/вода или синтетическая основа/вода, а также от используемых добавок.В особенно сложных условиях бурения необходимо учитывать влияние температуры и давления на параметры бурового раствора.Это влияние на вязкость раствора можно определить с помощью ротационного вискозиметра высокого давления и температуры, такого как FannModel 50 (для растворов на водной основе), FannModel 70/75 или HuxleyBertram(для растворов на углеводородной или синтетической основе).Методика API для определения влияния температуры и давления
Температурная константа (β) для каждого раствора должна определятся для каждой скорости сдвига.
Константа давления (α) должна определятся для каждого бурового раствора.
Буровые растворы для бурения, заканчивания и капитального ремонта скважин
В процессе бурения необходимо производить контроль реолологических параметров бурового раствора с целью предупреждения обвалов стенок и размыва устья скважины.
После утяжеления раствора за счет выбуренной породы до необходимой плотности необходимо обеспечить качественную очистку бурового раствора.
В случаи поглощения бурового раствора применять вязкие пачки с наполнителем (кордовое волокно, резиновая крошка, древесные опилки, ореховая скорлупа).
Перед спуском обсадной колонны рекомендуется обработать буровой раствор смазывающей добавкой FK-Lube или иными смазывающими добавками.
В процессе бурения на репрессии с промывкой любым типом бурового раствора в околоскважинной зоне формируется зона кольматации и зона проникновения фильтрата, физико-химический состав и глубина которых определяют как устойчивость приствольной зоны, так и снижение гидропроводности и фазовой проницаемости продуктивного пласта.
На основе анализа фундаментальных исследований в области химии и биохимии углеводов, обобщения практики бурения скважин в качестве полимерных реагентов для регулирования фильтрационных и реологических свойств безглинистых и малоглинистых буровых растворов используются полисахариды.
Основной причиной выбора полисахаридов является их способность к химической и биологической деструкции, за счет чего обеспечивается возможность разрушения и удаления кольматационного слоя, образующегося в процессе бурения, и практически полное восстановление коллекторских свойств пласта.
Разработана технология получения комплексных полисахаридных реагентов с использованием ингибиторов термоокислительной деструкции, в качестве которых использованы водорастворимые силикаты, бораты щелочных металлов, формиаты натрия и калия.
Комплексные реагенты содержат также гидрофобизирующие добавки на основе калиевых солей жирных кислот и неионогенного ПАВ.
Применение этих реагентов обеспечивает сохранение регламентированных реологических и фильтрационных свойств полисахаридных систем при t =90-1800 о C в течение длительного времени (исследования проводились в течение 45 суток).
На основе этих реагентов предлагается ряд рецептур безглинистых и малоглинистых буровых растворов для различных условий бурения, особенности состава и свойств которых приведены ниже.
Полимер-эмульсионный буровой раствор (ПМГ) для бурения надпродуктивного интервала
В качестве основного средства промывки скважины при бурении надпродуктивного интервала наиболее эффективно применение бурового раствора со свойствами, обеспечивающими устойчивость глинистых отложений, снижение проницаемости водоносных пластов, качественную очистку ствола скважины.
Высокопроницаемые водоносные пласты, неизолированные к моменту первичного вскрытия продуктивного пласта, требуют больших затрат обрабатывающих реагентов, завышения сверх необходимого его структурных показателей, добавления в раствор кольматантов, оказывающих отрицательное влияние на качество вскрытия пласта.
Входящие в состав раствора полимерные и ингибирующие реагенты придают раствору необходимые свойства.
Реагент-гидрофобизатор Синтал выполняет роль стабилизатора неустойчивых отложений, кольматирующей, гидрофобизирующей и смазывающей добавки.
Дополнительная кольматация водоносных пластов и упрочнение стенок скважины достигается водорастворимыми силикатами (силикаты натрия, калия или их смеси).
Применение полианионной целлюлозы в сочетании с Синтал и силикатами обеспечивает буровому раствору необходимые реологические характеристики.
С использованием гидравлических программ (программа Landmark) рассчитываются оптимальные показатели реологических свойств раствора для бурения наклонных, пологих и горизонтальных участков стволов скважин.
Компонентный состав для конкретного месторождения уточняется по результатам анализа геолого-технической документации и проведения дополнительных исследований кернового материала или шлама.
Выбор комплекса ингибиторов проводится по стандартам АНИ и отечественным методикам.
Буровой раствор характеризуется низкими значениями показателя фильтрации (Ф = 2,0-8,0 см 3 по АРI), регулируемыми в широком диапазоне реологическими показателями (η=10-40 мПа*с; τ0=25-180,0 дПа ), низким коэффициентом трения (Ктр = 0,07-0,1 по API).
Положительно то, что этот раствор легко модифицируется в буровой раствор для вскрытия продуктивного пласта путем дополнительного ввода крахмала, карбоната кальция и биополимера.
Раствор БР-ПМГ успешно применяли при проводке скважин в неустойчивых глинизированных отложениях значительной протяженности с зенитным углом 50-70º с сохранением номинального диаметра скважин при бурении пологих и горизонтальных участков ствола скважины, в тч при бурении дополнительных стволов на месторождениях Пермской области, при этом исключается необходимость установки цементных мостов в верейском горизонте, которые при бурении по традиционной технологии были обязательны.
В настоящее время этот раствор применяется на месторождениях республики Коми, Казахстана.
Буровые растворы на основе полисахаридов для вскрытия продуктивного пласта
Выбор оптимальной рецептуры бурового раствора для вскрытия продуктивного пласта рассматривается как ключевой момент сохранения коллекторских свойств пласта.
В лаборатории разработано несколько типов безглинистых систем на основе полисахаридов (ББР), которые предназначены для вскрытия продуктивных пластов.
Методически выбор компонентного состава бурового раствора для вскрытия продуктивного пласта обосновывается по результатам оценки его влияния на изменение проницаемости пористой среды и по коэффициенту восстановления проницаемости образцов керна после фильтрации бурового раствора при реальных перепадах давлений, возникающих при первичном вскрытии.
Для предотвращения глубокого проникновения дисперсной фазы и дисперсионной среды бурового раствора в пласт предусматривается ввод кислоторастворимого кольматанта, фракционный состав которого выбирается по результатам исследования кернового материала конкретного месторождения.
Применение полимерных реагентов из класса полисахаридов и правильный подбор фракционного состава кольматанта обеспечивает быстрое формирование в призабойной зоне пласта незначительной по глубине и низкопроницаемой зоны кольматации, которая предупреждает глубокое проникновение бурового раствора и его фильтрата в пласт в период первичного вскрытия, но легко разрушается в период освоения.
Зона кольматации, сформированная ББР на основе полисахаридов, может быть легко разрушена в процессе освоения при использовании специальных деструктурирующих реагентов, например, комплексного реагента КДС, который предлагается в качестве основы перфорационной среды.
В зависимости от геолого-технических условий, конструкции скважины разработано несколько вариантов ББР.
БЕЗГЛИНИСТЫЙ БУРОВОЙ РАСТВОР ББР-СКП
Присутствие ингибиторов набухания и диспергирования глин (КС1, силикаты и др.) обеспечивает устойчивость глинистых отложений и предупреждает набухание глины в коллекторе пласта. ББР-СКП стабилен при любой минерализации, фильтрационная корка устойчива к воздействию тампонажного раствора.
Дополнительное физико-химическое модифицирование фильтрационной корки ББР в процессе подготовки ствола скважины к цементированию обеспечивает плотный контакт цементного камня с породой.
БЕЗГЛИНИСТЫЙ БУРОВОЙ РАСТВОР РЕОГЕЛЬ
Уникальные структурно-реологические и низкие фильтрационные свойства раствора обеспечивают минимальное проникновение его в пласт, одновременно раствор характеризуется высокими капсулирующими свойствами, обеспечивая незначительную смачиваемость выбуренной породы, тем самым препятствуя диспергированию шлама, но обеспечивая полное осаждение шлама при низкой скорости течения (в отстойниках, желобах и приемных емкостях буровых насосов).
Буровой раствор не создает в проницаемых пластах на стенке скважины толстой фильтрационной корки и способствует высокой степени замещения бурового раствора тампонажным.
Входящий в состав бурового раствора антиоксидант предотвращает ферментативное разложение полисахаридов.
Эффективность этого раствора с точки зрения сохранения коллекторских свойств пласта не ниже, чем у известных систем буровых растворов с биополимером и мраморной крошкой, но стоимость раствора значительно ниже за счет использования только отечественных реагентов.
ПОЛИМЕР-ЭМУЛЬСИОННЫЙ БУРОВОЙ РАСТВОР ЭМУЛГЕЛЬ
Для строительства скважин в сложных гидрогеологических и технико-технологических условиях (например, при бурении через кыновские аргиллиты, глауконитовые глины) при необходимости решения основной проблемы сохранения устойчивости ствола скважины в интервалах залегания неустойчивых глинистых отложений при больших зенитных углах и обеспечения выноса шлама из сильно искривленного участка ствола скважины разработан полимер-эмульсионный буровой раствор ЭМУЛГЕЛЬ.
Исследования показали, что наибольший эффект по сохранению стабильности сланцев достигается в углеводородсодержащих средах в присутствии ингибирующих добавок (KCl, силикаты, CaCl2).
За счет повышенного содержания углеводородсодержащей составляющей раствор обладает усиленными ингибирующими свойствами и оптимальными структурно-реологическими показателями, необходимыми для качественной очистки забоя при больших зенитных углах.
Полученная прямая эмульсия типа «масло в воде» обладает положительными свойствами растворов на нефтяной основе, но при этом исключаются такие негативные свойства РНО, как экологическая и пожарная опасность.
Этот раствор может быть использован и для бурения горизонтального участка при вскрытии продуктивного пласта, т. к. по своим физико-химическим и технологическим показателям отвечает требованиям для качественного вскрытия продуктивного пласта.
УТЯЖЕЛЕННЫЕ БУРОВЫЕ РАСТВОРЫ ДЛЯ ВСКРЫТИЯ ПРОДУКТИВНЫХ ПЛАСТОВ
Для ведения работ в условиях АВПД традиционно используют глинистые буровые растворы, содержащие в качестве добавок баритовый, железистый и другие утяжелители. Эти системы отличают относительно невысокая стоимость, широкий спектр обрабатывающих реагентов и большой опыт применения.
Однако использование таких растворов приводит к необратимой кольматации продуктивных пластов (особенно низкопроницаемых, трещиноватых и трещино-поровых коллекторов) и требует дополнительных дорогостоящих операций по восстановлению проницаемости пласта.
Безглинистые буровые растворы, плотность которых регулируется концентрацией водорастворимых солей и кислоторастворимых утяжелителей, имеют принципиальное преимущество перед глинистыми при заканчивании скважин за счет исключения из состава кольматанта, трудноудаляемого из ПЗП при освоении.
Дополнительным преимуществом таких буровых растворов является более высокое качество крепления скважин.
Разработаны утяжеленные безглинистые буровые растворы плотностью до 1600 кг/м 3 на основе пластовой воды, растворов неорганических солей (хлориды натрия, калия, кальция, магния) и карбоната кальция для доутяжеления.
Оптимизация реологических и фильтрационных свойств этих растворов проводится комплексом полисахаридных реагентов.
Высокую плотность растворов могут обеспечивать не только неорганические соли, но и органические, в частности, формиаты щелочных металлов.
Формиаты обладают рядом преимуществ по сравнению с тяжелыми неорганическими солями, и в частности, экологической безопасностью, высокой ингибирующей способностью по отношению к глинистым сланцам, повышением термостабильности полисахаридных реагентов, низкой коррозионной активностью, совместимостью с пластовыми флюидами, снижением коэффициента трения буровых растворов.
Разработаны технологические жидкости на основе формиатов, которые содержат комплекс полисахаридных реагентов для регулирования фильтрационных, реологических, псевдопластичных и капсулирующих свойств и мраморную крошку для временной кольматации ПЗП.
Буровые растворы на основе формиатов сохраняют термостабильность при температурах до 200 о С, имеют низкие значения показателя фильтрации (0,5-3,5 см 3 при DР = 0,7 МПа), регулируемые в широких пределах значения пластической вязкости (h=15-95 мПа*с) и динамического напряжения сдвига (τ0=60-200 дПа), при этом буровые растворы имеют низкие гидравлические сопротивления (коэффициент консистенции К =0,008-0,227 при скорости сдвига 511/1022с-1), низкие значения коэффициента трения (Ктр=0,09- 0,207), фильтрат раствора имеет низкое поверхностное натяжение на границе с углеводородной жидкостью (σ=0,0083-0,013 Н/м).
Предлагается несколько рецептур:
— Системы без твердой фазы на основе формиата натрия (r = 1300 кг/м 3 ), формиата калия (r = 1670 кг/м 3 ), формиатов калия и цезия (r = 2200 кг/м 3 );
— Системы с частичной заменой формиатов на кислоторастворимый карбонатный утяжелитель (r = 1800 кг/м3). В качестве утяжелителя использовали мраморную крошку;
— Системы с пониженным содержанием кислотонерастворимой твердой фазы (r = 2200 кг/м 3 ). Для доутяжеления используется барит, Магбар, сидерит (карбонат железа), гематит.
не ужесточаются требования со стороны природоохранных организаций, так как при их использовании и при использовании совместно с другими компонентами бурового раствора не образуется экологически опасных отходов;
появляется возможность многократного и многоцелевого использования бурового раствора ввиду его высокой ферментативной устойчивости и устойчивости к термоокислительной деструкции;
для приготовления и очистки бурового раствора в процессе бурения не требуется дополнительного оборудования буровых установок;
буровой раствор на основе формиатов может быть использован в качестве жидкости глушения или жидкости перфорации, т. к. он не оказывает отрицательного влияния на коллектор.
РЕЗУЛЬТАТЫ ПРОМЫШЛЕННОГО ПРИМЕНЕНИЯ БУРОВЫХ РАСТВОРОВ НА ОСНОВЕ ПОЛИСАХАРИДОВ
С использованием безглинистых и малоглинистых буровых растворов на основе полисахаридных реагентов в гг в Пермском Прикамье пробурено более 300 скважин, в тч пологие и горизонтальные скважины.
Растворы применялись также в ЛУКОЙЛ-Западная Сибирь, и КРС (п. Самарский), Удмуртии, республиках Коми и Казахстан.
Анализ результатов применения буровых растворов на основе полисахаридов при бурении вертикальных, наклонно-направленных и горизонтальных скважин позволил отметить следующие преимущества предлагаемых систем буровых растворов:
— Высокие ингибирующие и низкие фильтрационные характеристики растворов позволили сохранить устойчивость стенок ствола скважины на весь период бурения. Каротажный материал (каверномер) показал, что средний диаметр скважин в интервале залегания терригенных отложений близок к номинальному.
— Поддержание реологических характеристик на уровне проектных значений обеспечило высокую выносную и удерживающую способности безглинистых буровых растворов, что позволило избежать осложнений в процессе бурения, связанных с зашламлением ствола скважины при зенитных углах 30-700.
— Вскрытие продуктивного пласта проходит без остановок в бурении, так как раствор ББР-ПМГ, используемый для бурения надпродуктивного интервала, совместим с безглинистыми буровыми растворами, используемыми для вскрытия продуктивного пласта, в тч для горизонтальных участков стволов скважины.
Поэтому для проводки горизонтального участка и первичного вскрытия продуктивного пласта не требуется сброс циркулирующей в скважине промывочной жидкости и, соответственно, сократились временные затраты по приготовлению раствора.
— Использование растворов позволило повысить технико-экономические показатели работы долот за счет высокой смазывающей способности и низкого значения коэффициента трения.
— Проведенные гидродинамические исследования коллекторских свойств продуктивного пласта показали отсутствие загрязнения ПЗП (фильтрационно-емкостные характеристики призабойной и удаленной зон продуктивного пласта практически одинаковы); после освоения скважин полученные дебиты соответствовали или превышали проектные, время освоения сократилось в 1,5-2 раза, при этом освоение скважины проходит, как правило, без дополнительных воздействий на пласт.
применяемого для вскрытия продуктивного пласта